Privacy-preserving linear programming

نویسنده

  • Olvi L. Mangasarian
چکیده

We propose a privacy-preserving formulation of a linear program whose constraint matrix is partitioned into groups of columns where each group of columns and its corresponding cost coefficient vector are owned by a distinct entity. Each entity is unwilling to share or make public its column group or cost coefficient vector. By employing a random matrix transformation we construct a linear program based on the privately held data without revealing that data or making it public. The privacy-preserving transformed linear program has the same minimum value as the original linear program. Component groups of the solution of the transformed problem can be decoded and made public only by the original group that owns the corresponding columns of the constraint matrix and can be combined to give an exact solution vector of the original linear program.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Privacy-preserving horizontally partitioned linear programs with inequality constraints

In this paper we solve the open problem, finding the solutions for privacy-preserving horizontally partitioned linear programs with inequality constraints, proposed recently by Mangasarian, O.L. ( Privacy-preserving horizontally partitioned linear programs, Optim Lett 2011, to appear).

متن کامل

Practical Secure and Efficient Multiparty Linear Programming Based on Problem Transformation

Cryptographic solutions to privacy-preserving multiparty linear programming are slow. This makes them unsuitable for many economically important applications, such as supply chain optimization, whose size exceeds their practically feasible input range. In this paper we present a privacy-preserving transformation that allows secure outsourcing of the linear program computation in an efficient ma...

متن کامل

Location Privacy-Preserving Task Allocation for Mobile Crowdsensing with Differential Geo-Obfuscation

In traditional mobile crowdsensing applications, organizers need participants’ precise locations for optimal task allocation, e.g., minimizing selected workers’ travel distance to task locations. However, the exposure of their locations raises privacy concerns. Especially for those who are not eventually selected for any task, their location privacy is sacrificed in vain. Hence, in this paper, ...

متن کامل

A centralized privacy-preserving framework for online social networks

There are some critical privacy concerns in the current online social networks (OSNs). Users' information is disclosed to different entities that they were not supposed to access. Furthermore, the notion of friendship is inadequate in OSNs since the degree of social relationships between users dynamically changes over the time. Additionally, users may define similar privacy settings for their f...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Optimization Letters

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2011